The Grevena (Central-North) Greece Earthquake Series of May 13, 1995

Pan. G. Carydis, Professor of Earthquake Engineering, NTUA; Konst. S. Holeva, Civil Engineer, Emergency Response Department, EPPO; Eft. C. Lekkas, Geologist, Assistant Professor, Athens University; and Tax. D. Papadopoulos, Geophysicist, Assistant Professor, Athens University, are members of the scientific emergency committee advising the interministerial coordinating board of Greece. The authors visited the earthquake-stricken area a few hours after the main shock and stayed on site for two days. The mission was initiated and supported by the Earthquake Planning and Protection Organization (EPPO).

Introduction

At 11:47 a.m. local time on Saturday May 13, 1995, a strong shallow earthquake of magnitude 6.6 on the Richter scale shook the Kozani farm area of central-north Greece. The earthquake was registered at 40.1° N latitude, and 21.7° E longitude, 130 km west of Salonika. The event was preceded by two minor foreshocks. This report refers to the findings and information up to the second day after the main shock occurred, unless otherwise mentioned. The report was written on May 18, the fifth day after the main shock.

No deaths were reported as a result of the earthquake. Fifteen injuries were attributed to the earthquake. Two rather severe incidents were due to road accidents. Seven hundred buildings totally collapsed in twelve villages of Grevena Prefecture and 200 in five villages of Kozani Prefecture. The number of uninhabitable houses increased dramatically day by day. From 2,000 such houses reported shaken the region almost continuously. The direct loss from the earthquakes is currently estimated at $40 million U.S. dollars.

Figure 1—Typical damage to the buildings in the region struck by the earthquake.

on May 14, the number reached 7,000 on May 17. Many strong aftershocks have been recorded within the range of 4.5 to 5.4 on the Richter scale while thousands of more minor earthquakes have

Figure 2—The remains of the school in the village of Kendron.

The affected area has an elliptical
shape covering 350 km². This area contains 80 villages. Among the uninhabitable buildings were 30 schools, 15 churches, and 2 hospitals. Power was unavailable for 30 minutes after the earthquake over an extensive part of the country.

Seismic History

The affected area lies in a region of low seismicity. There are two other such regions in Greece, Cyclades and Massif of Rhodope, which are the most stable ones. The nearest and largest earthquake reported since 1700 was an event which occurred on October 25, 1984. This earthquake, a magnitude 5.5 on the Richter scale, affected the village of Kranidia, 10-15 km northeast of the village of Rinnione. Rinnione was badly damaged by the recent earthquake. Two other previous events were also recorded north of the currently damaged region. One was a Richter magnitude 4.7 earthquake at the city of Kozani on February 9, 1984.

Figure 3—Simplified geologic map of the earthquake-stricken area.

1. Alluvium - scree
2. Plio-Pleistocene sediments

MOLASIC SEDIMENTS
3. "Tsotilion" formation
4. "Pentalofon" formation

ALPINE UNITS
5. Ophiolitic complex
6. "Eastern Greece" Geotectonic Unit Limestone
7. "Flambouron" Geotectonic Unit Gneisse and Amphibolite

8. Fault zones and faults
The other was a Richter magnitude 4.8 on October 25, 1984, at the city of Ptolemais (data from the Geodynamic Institute of National Observatory of Athens). According to seismological reports the return period of the recent main shock is on the order of 1,000 years.

Geotectonic Structure

The affected region extends from the northwest boundary of the Messohellenic Trench, passes through Vourino ophiolites, Eastern Greece Unit limestone and dolomite, and reaches the south part of Kozani post-Alpine basis.

The tectonic structure is composed of a part of the eastern margin of the Messohellenic Trench, Vourinos Mt., and the Kozani Basin. Farther towards the east, a tectonic zone juxtaposes Vourinos Mt. and Kozani Basin which in turn is bordered on the south by the Servia fault zone of a NE-SW direction changing to E-W at Rimnion. No seismic rupture of the surface was observed after the main shock. However, a limited number of rock falls, landslides, and some subsidence were observed.

Earthquake Motion

From the observations of people who were interviewed by the authors, the vertical component of the ground motion was the most damaging. The order of magnitude of the vertical component after the interpretation of the evidence was estimated to be as high as 1 g. The authors also experienced many strong aftershocks during their stay at the seismonal area. All of the aftershocks had strong vertical components of short duration and high frequency.

The duration of the main shock, as felt by the nearby people, coincides with the recorded data at the city of Kozani by IESEE. According to this record, the peak ground accelerations were: longitudinal: 0.21 g; transverse: 0.15 g; and vertical: 0.08 g. The duration of the strong phase was seven seconds, while that of the whole motion was 20 seconds.

Damage to the Built Environment

The general quality of the houses and other buildings in the region is poor. A large percentage of the collapsed buildings were old and not well maintained. Some buildings which were not properly built

Figure 4—Typical old house of the region reinforced with wooden beams. Houses of the same type but without the wooden beams suffered much more damage or collapsed.

Figure 5—The damaged church in the village of Knidi. The cracks are typical of the strong vertical component of the ground motion.
to earthquake standards suffered extensive damage.

The area under consideration is classified as the first and lowest seismic zone which, according to the new regulation for the earthquake-resistant design of structures, uses $a_g = 0.12g$ compared with the fourth and highest seismic zone of Greece with $a_g = 0.36g$.

Some of the non-engineered buildings in the region are adobe or rubble masonry with wooden reinforcing beams. This older type of building sustained the earthquake without suffering extensive damage. Most of the collapses were observed in one- or two-story rubble masonry houses built mainly without mortar. A considerable portion of these houses had been renovated using concrete and heavy tile roofs which were incompatible with the older building.

Additions and extensions to existing buildings resulted in an increase in the level of damage. The damage observed presented a rather symmetrical distribution about the vertical axes of the buildings. For example, the tiles were scattered from the top and center towards the lower edges. Characteristically, damage was observed at the corners of the buildings and roofs. The dominating damage patterns included horizontal and vertical cracking of walls, and dislocation of rigid members, such as lintels, from the structures. There was no crushing of joints observed between the ground floor and upper part of the houses.

Modern structures, built according to the seismic code, performed satisfactorily and sustained only minor damage, although designed for lower seismic loads. Some villages, although located inside the mesoseismic region, suffered quite limited damage compared with neighboring villages that almost totally collapsed.

The fact that there were no deaths and few injuries is partially attributed to the occurrence of the two foreshocks. Due to the previous absence of strong seismic activity in the region, people were frightened immediately after the first foreshocks and evacuated their houses. The time lapse between the last foreshock and the main shock was short enough to keep people away from their houses.

The earthquake also occurred on a Saturday, when both schools and churches were empty.

Conclusions

This earthquake proved that the hypothesis of the existence of aseismic regions in an earthquake-prone country, of the size of Greece, must be abandoned.

Lessons learned from strong earthquakes in various territories in Greece have shown that the existing four seismic zones should be reconsidered for a better level of building safety.

The belief that the vertical earthquake motion is a rare phenomenon must be abandoned. The design and construction of structures to withstand this direction of motion must be reflected in the codes with the same reliability as for horizontal seismic motions.

The occurrence of foreshocks of an appropriate magnitude and time before the main shock gave people enough warning to leave their houses, and thus saved their lives.

The authors want to thank EPPO for initiating and supporting this mission, and Ms. Alice Moncaster for her assistance with the wording of the manuscript.

The publication and distribution of this report was funded by National Science Foundation Grant #BCS-9215158, EERI's Learning From Earthquakes project.