Announcements

Seminar on Controversial Issues in Earthquake Engineering

The European School for Advanced Studies in Reduction of Seismic Risk (ROSE) is holding its first international seminar in Pavia, Italy, June 25–26, 2001.

The ROSE School was established last year to offer a high-level educational environment in earthquake engineering to top-level graduate students from all over the world (see page 5 of the September 2000 Newsletter). The teaching system is based on short courses, offered in series by highly qualified international faculty.

As part of the school program, an international seminar will be organized every year to present and discuss Ph.D. theses that are in an advanced stage of development.

Although no Ph.D. thesis has yet been started, the First International ROSE Seminar has been organized to establish a tradition and to allow a forum for discussing some of the more controversial current issues in earthquake engineering. Only eight presentations will be given, allowing an in-depth discussion of each. The eight contributions to the seminar will be published in a special issue of the Journal of Earthquake Engineering.

In addition to the ROSE School students and scientific board members, up to 40 additional participants may be accepted.

Those who wish to attend should contact the ROSE School Secretariat at Collegio Alessandro Volta, Via Ferrata, 27100, Pavia, Italy; phone: +39 0382 548735; fax: +39 0382 528422; e-mail: rose@unipv.it; web site: spadino.unipv.it/rose.html.

News of the Profession

Major Earthquake Hits Seattle Area

The strong earthquake that occurred about 20 km northeast of Olympia, Washington, at 10:54 a.m. local time on February 28, 2001, is officially known as the Nisqually earthquake, named for a river delta in the epicentral area. It had a magnitude of 6.8 and caused one death and hundreds of injuries, most of them minor, in the Seattle-Tacoma region. City and state officials have estimated damage in excess of $1 billion in lost property and economic activity. At the request of Governor Gary Locke, President Bush declared the state of Washington a disaster area, clearing the way for federal relief. The earthquake occurred at a depth of approximately 50 km and was caused by normal faulting in the subducting Juan de Fuca Plate. It was located in the same general area as a magnitude 7.1 earthquake on April 13, 1949. An Earthquake Clearinghouse was established as a collaborative effort between EERI, the Pacific Earthquake Engineering Research Center, and the University of Washington, Seattle. Extensive information on the Nisqually earthquake is located on the EERI web site at www.eeri.org. The available information includes a preliminary reconnaissance report; details of seismological, geotechnical, structural, lifelines, and socioeconomic observations; and links to other sources of information such as government and newspaper web sites. EERI members will receive a preliminary report soon.

News of the Institute

López García Wins Grad Student Paper Competition, Ranf Wins Undergrad Category

Diego López García, a graduate research assistant in the Department of Structural Engineering at the State University of New York at Buffalo, captured the top prize in the graduate student paper category in EERI’s competition with his paper, “A Simple Method for the Design of Optimal Damper Configurations in MDOF Structures.” López García presented his paper at the Annual Meeting in Monterey in February. In the undergraduate category, Richard Tyler Ranf, of the Department of Civil Engineering at Washington University in St. Louis, submitted the winning paper entitled “The Possibility of Damage to the Melvin Price Lock Due to Soil Liquefaction.” Both students received travel grants to attend the Annual Meeting. EERI extends appreciation to the members of the Student Paper Review Panel who worked under the leadership of Student Activities Committee Chair Eric Williamson of the Civil Engineering Department at the University of Texas, Austin.

López García’s paper proposes a “simplified sequential search algorithm” procedure as a method of designing optimal configurations of supplemental dampers that is simple enough to be used routinely. It would not require the use of any technique that structural engineers are not familiar with. The applicability of the method is limited to those cases where the response of the structure with added dampers remains linear. In Ranf’s paper, he analyzes the data from borings in the soil around the Mississippi River’s Melvin Price Lock. This soil has a low possibility of liquefaction. The lock is comprised of monoliths supported by 80-foot long piles that could possibly fail from buckling due to the weight of the monoliths. The disruption in the transportation of goods from closure of the lock would result in financial losses of up to $3.5 million per day.