Damage Assessment and Seismic Retrofit of Buildings Following the 2015 Nepal and 2016 Ecuador Earthquakes

H. Kit Miyamoto, PhD SE and Amir SJ Gilani, PhD SE
Miyamoto International
Los Angeles, CA

Abstract

The M 7.8 earthquakes (Nepal 2015 and Ecuador 2016) caused massive damage to the built environment and affected societies severely. In Nepal, it caused over 9000 fatalities and destroyed over 600,000 structures. Economic impact is at a cost of roughly a quarter of Nepal’s GDP and it keeps increasing. The Ecuador earthquake resulted in over 600 casualties and injuries to close to 28,000 and triggered collapse of hundreds of structures, was felt at Quito, nearly 180 km away. This earthquake severely damaged the coastline of approximately 200 km long. Both earthquakes occurred on Saturday daytime. This reduced the number of causalities including schoolchildren. Over 7000 schools were heavily damages or collapsed in Kathmandu and several hundreds were damaged in Ecuador. In Kathmandu, which is built in an ancient lakebed, far from the epicenter, site amplification resulted in large spectral acceleration at periods of 2 to 4 sec which in-turn excited the large or tall buildings with fundamental periods in this period range, resulting in significant damage to these modern concrete buildings. After almost one year of political and environmental stalemate, reconstruction is just about starting. In Ecuador, Similar to Kathmandu, many of affected cities such as Portoviejo are situated on soft soil and thus susceptible to site amplification. Not only older nonductile construction is again shown as dangerous, but also many modern code conforming buildings sustained nonstructural damages and plastic hinges and they cannot be occupied. Modern building codes may save lives but it certainly not able to provide resiliency in communities affected by major earthquakes. The society’s expectation is far higher than what are routinely provided by minimum code requirements of life safety.

Introduction

The 2015 Nepal and 2016 Ecuador earthquakes were not extreme events and occurred away from major population centers. Nonetheless, these had unprecedented (but not unanticipated) consequences; see Table 1. In both cases, two key findings, also seen in other recent earthquakes, stand out:

- Structures not designed per modern seismic codes such as unreinforced masonry and nonductile concrete buildings were severely damaged or collapsed. These buildings are dangerous structures and are the primary cause of large fatalities in earthquakes. Seismic retrofit of these buildings is time-critical.

- Buildings designed and detailed using provisions of modern seismic codes protected life and did not collapse, however, they experienced damage causing loss of occupancy and/or operation. These buildings performed as expected according to building codes. Nonetheless, many residents had to evacuate them and thus from their perspective, the performance was less than adequate.

<table>
<thead>
<tr>
<th>Event</th>
<th>2015 Nepal Earthquake</th>
<th>2016 Ecuador Earthquake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment magnitude</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Fatalities</td>
<td>8000</td>
<td>660</td>
</tr>
<tr>
<td>Injuries</td>
<td>22000</td>
<td>14000</td>
</tr>
<tr>
<td>Damage</td>
<td>>600000 structures</td>
<td>10,000 buildings</td>
</tr>
<tr>
<td></td>
<td>>500 schools</td>
<td>>700 schools</td>
</tr>
<tr>
<td>Economic impact</td>
<td>$6 billion US</td>
<td>$3 billion US</td>
</tr>
</tbody>
</table>

2015 Nepal Earthquake

Overview

On 25 April 2015 at 11:56 am local time, a magnitude M7.8 earthquake struck central Nepal, near the Kathmandu capital region with a population of 2.5 million. This was the largest earthquake in the area since the 1950 M8.6 earthquake in Assam, eastern India. The epicenter of this earthquake was located approximately 80 km Northwest of Kathmandu, but most of the aftershock activity was much closer. Strong motion data. In Kathmandu, which is built in an ancient lakebed, far from the epicenter, strong motion data from the
Earthquake; see Figure 1, was available and the peak ground acceleration was approximately 0.10-0.15 g. However, site amplification resulted in large spectral acceleration at periods of 2 to 4 sec; see Figure 2 These peaks at larger periods, in turn excited the tall buildings with fundamental periods in this period range, resulting in significant damage to these modern concrete buildings. As seen in the figure, the spectral acceleration demand on buildings, in particular, for structures with periods of larger than 1 sec, is significantly larger that the spectrum used to design these structures (NBC 1994 and IS 2002). Accordingly, buildings, in particular mid- and hi-rise, designed per code would experience larger forces and displacements that were anticipated. As a result: i) for buildings with ductile detailing, the larger demand would result in plastic hinging and damage and ii) for buildings without ductility, severe damage and collapse could occur.

Damage summary for schools

In the past earthquakes in developing countries, school buildings have been especially vulnerable to damage from earthquakes (Miyamoto et al 2011). The same was the case in Nepal; see Figure 3 and Figure 4. In the aftermath of the 2015 main event, data from the Department of Education (DOE 2015) was analyzed by the authors. Initial findings are shown in Table 2. It is noted that damage to school buildings was extensive ad widespread. The number of school casualties was, fortunately, limited because the earthquake occurred on Saturday when schools were not in session.

<table>
<thead>
<tr>
<th>District</th>
<th>Kathmandu</th>
<th>Lalitpur</th>
<th>Bhaktapur</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schools</td>
<td>299</td>
<td>200</td>
<td>126</td>
<td>625</td>
</tr>
<tr>
<td>Buildings</td>
<td>673</td>
<td>602</td>
<td>389</td>
<td>1664</td>
</tr>
<tr>
<td>Classrooms</td>
<td>3604</td>
<td>2454</td>
<td>1717</td>
<td>7775</td>
</tr>
<tr>
<td>Students+Staff</td>
<td>166000</td>
<td>77500</td>
<td>36000</td>
<td>279500</td>
</tr>
<tr>
<td>Damaged schools</td>
<td>78</td>
<td>149</td>
<td>36</td>
<td>263</td>
</tr>
<tr>
<td>%</td>
<td>26%</td>
<td>75%</td>
<td>29%</td>
<td>42%</td>
</tr>
</tbody>
</table>
Damage Assessment in Everest Region

The Everest region, one of the most popular tourism destinations of the country, is located in the northeast of Nepal. Following the 2015 main and aftershocks, with funding from the World Bank’s International Finance Corporation (IFC) and on behalf of the government of Nepal through the Ministry of Culture, Tourism and Civil Aviation, an assessment team was assembled and dispatched to the region to survey and record the earthquake damage along the main trekking routes. The aim of these efforts was to promote tourism to Nepal, which would support the overall economic recovery and return to normalcy in there. The Everest regions is located approximately 200 km and 60 km, from the epicenter of the main shock and the main after shock, respectively. This region experienced the level of shaking of MMI of V to VI. In the Everest area, typical hotel construction used either wood or bearing wall systems. Traditional buildings used bearing walls of uncut stone with mortar and bearing walls of cut rectangular block stone with or without mortar (mud and cement for older and newer buildings). Some accommodation structures in Everest utilized horizontal concrete bands spaced intermittently in the stonewall construction.

The level of damage in traditional construction was depended on the construction practice. The buildings with stone and mortar generally performed well. By contrast, in older buildings where either no mortar was used or when mud was used as mortar, there was significant damage. For these buildings, see Figure 5, the out-of-plane failure of walls was the most common mode of failure, where stonewalls fell over or stones fell out, generally at the top of the walls. Since these bearing walls carry both seismic and gravity loading, their out-of-plane failure can compromise the gravity load path and can result in collapse of roofs and floors. For the surveyed buildings, a secondary wood beam supporting the roof was observed in many of the buildings. This member supported the roof after the failure of walls and prevented collapse of the roof. Accommodation structure built with cut rock, cement and ring beams that performed well; see Figure 6. Wood structures were mostly undamaged. The structural assessment of the buildings was conducted in accordance with the internationally recognized ATC-20 (ATC 2005) and the national guidelines for post-earthquake damage assessment specified by the Department of Urban Development and Building Construction (DUDBC) of the Government of Nepal. Out of approximately 710 surveyed buildings, earthquake damage of structural concern was observed in 120 buildings (17%); 83 percent of buildings were given a green tag per ATC-20 and DUDBC guidelines. It was found that most of the damaged buildings were repairable.

Seismic Evaluation and Retrofit of mid-rise Buildings in Katmandu

As mentioned previously, the soft soil underlying the Katmandu region produced large spectral accelerations in the 1-4 sec period range and excited mid-rise buildings. Many of these buildings are of newer construction vintage, had ductile detailing, and as such did not experience collapse. However, damage to these tower buildings was widespread; see Figure 7. Most of the mid-rise buildings used reinforced concrete moment framing as the lateral force resisting system. In addition, unreinforced infill walls were used for these buildings. The damage to the infill walls was extensive; see Figure 8, which caused the tenants to relocate temporarily from these units. It is noted that these are high-end condominium units.
Seismic retrofit of a midrise building in Nepal with viscous dampers

The new 70-m tall hotel building has 15 stories and 3 basement levels; see Figure 9, reinforced concrete moment frame exterior shear walls comprises the lateral load resisting system. The structure was designed per IS 2002. Following the 2015 Earthquake, it was decided to add the additional requirement of limiting the drift ratios to approximately 1.5% for a seismic event comparable to that earthquake. As shown in Figure 10, the building nearly met this criterion in the transverse direction. However, in the longitudinal direction, at the lower three levels, drift ratios exceeded this limit. To reduce the drift ratios, viscous dampers were added at these levels along the longitudinal direction. As shown in the figure, in the new configuration, drift ratios were limited to approximately 1.5%.

2016 Ecuador Earthquake

Overview

On 16 April 2016 at 18:59 local time, a magnitude M7.8 earthquake struck coastal Ecuador, near towns of Musne and Pedemales and 170 km away from Quito where it was felt strongly. There was significant damage in the areas close to the epicenter of earthquake.
Earthquake damage survey

In the aftermath of the earthquake, a reconnaissance team, comprising the first and local civil and structural engineers, was assembled and visited the impacted area to survey the damage, document findings, and assist the locals with damage assessment and recovery. The findings are summarized here. At the time of the team’s visit, the estimates of damage included some coastal area communities being 80% destroyed and some of the smaller coastal communities have not even been reached yet. The team met with local officials and discussed the process of training local engineers in conducting ATC 20 (ATC 2005) damage assessment.

Portoviejo

Portoviejo’s previously vibrant downtown of 223,000 citizens was fenced-off, 40-block Red Zone; see Figure 11. Over 200 people died in this city. In the red zone, heavy machinery was used to tear down damaged structures. A command center was setup on a campus. The recovery organization team and the prepared map of damage zone was quite adequate. The local officials have a plan to identify and demolish the dangerous buildings and then reduce the size of the corded off zones to allow normality to return to the city. It was also envisaged to setup public-private partnership to assist in recovery and seismic retrofit efforts. A drone was used to conduct aerial reconnaissance and prepare a detailed damage assessment map. The buildings were marked in green (inspected), yellow (damaged, limited entry), red (dangerously damaged, do not enter) and black (collapsed).

The team was divided into two teams and conducted damage assessment. Overall, 50%-60% of buildings appeared undamaged and 30% had slight to moderate damage. The remaining 10%-20% of buildings were severely damaged or collapsed. A multistory tower building; see Figure 12, was severely damaged and presented life safety hazard to nearby buildings and adjacent street.

The municipal building, housing mayor’s office, was damaged. However, the damage, although substantial, appears repairable and primarily is nonstructural. The building framing including reinforced concrete columns are undamaged. The damage to nonstructural components and contents, including furniture, and cabinets, was widespread. Nearby, a school building housing 400 students was inspected next. At the ground floor, structural damage is limited to superficial cracking of walls and concrete framing was intact. Upstairs, an interior brick wall dividing classrooms had collapsed and had fallen in one of the classrooms; see Figure 13. Fortunately, earthquake had occurred on a Sunday when the school was not open.

A communication company’s building had collapsed. Nearby, the upper floor of a four-story building had collapsed.
into a two-story apartment building. The residence itself was undamaged except for the repairable damage caused to its roof by the impact of the adjacent structure.

To provide training, local assessors are incorporated into assessment teams. The group then conducts damage assessment surveys of some buildings as a mean of providing first-hand training so local engineers and volunteers can then continue the work for the rest of buildings; see Figure 14.

The Centro Municipal Commercial, taking up an entire city block, is a popular downtown market and includes a large department store on one floor, small, subterranean stalls of independent vendors below it and an eight-floor office building. A large section of the market was severely damaged. The damage had interrupted business for over 180 vendors on this site and had caused economic hardship. Damage assessment of the building was conducted. The older part of the building is the eight story portion, whereas, the department store is the new addition. The eight-story tower only sustained minor damage. However, sections of the market were deemed unsafe by the team, see Figure 15.

Bahía de Caráquez

Bahía de Caráquez, located on a sandy peninsula at the mouth of the Chone River, suffered heavy earthquake destruction. A row of tents was setup to house displaced people from damaged buildings and others who were frightened to return home. The exterior wall of a five-story building was on the verge of out-of-plane failure. In downtown area, about one-third of the buildings were severely damaged or collapsed. Next, two eight-story twin towers that were constructed recently, were visited. One tower appeared undamaged, whereas, the second building had suffered complete collapse and caused 12 fatalities. Such occurrences, occurred in previous earthquakes, are attributable to variations in site condition, architectural detailing, material quality, and means of construction. In a neighborhood of oceanfront high-rise condominiums, nearly all towers have exterior cracks. They were no fatalities; however, the extent of damage was hampering recovery efforts. Visiting one of the towers, there was major cracking of infill walls; see Figure 16. However, the concrete columns appear to have suffered only limited damage.

Pedernales

The coastal town of Pedernales, with 172 fatalities, is perhaps the worst hit by the earthquake. Many buildings collapsed here including a number of reinforced concrete structures with questionable material, inadequate strength, and detailing; see Figure 17.
Chamanga

Chamanga is a humble fishing village tucked into a bay. Typical houses are rotted wood or concrete regularly flood and sit in a tsunami zone without a warning system. More than 50% of buildings had collapsed; see Figure 18 and 6000 people were living in temporary tents. One of the four schools constructed of bearing walls and tin roof, had collapsed walls.

Application of BRB to a midrise building in Ecuador

The 41-m tall building has 7 stories and 2 penthouse levels; see Figure 19. Reinforced concrete moment frame comprises the lateral load resisting system. Typical beams measure 350x450 mm and square columns vary in size from 450 to 700 mm. The structure was designed per Ecuador building code. Following the 2016 Earthquake, it was decided to add the additional requirement of limiting the drift ratios to approximately 1.5%-2% for the MCE event. And BRBs were added to the building model; see Figure 20. As shown in Figure 21 the drift ratios for moment frame alone exceeded this limit and were 2.8% at middle of the building. To reduce drift ratios, BRBs were added to the building and this reduced the maximum drift ratio to approximately 1.8%.
Conclusions

The 2015 and Nepal and 2016 Ecuador earthquakes resulted in significant casualties, collapsed building, and economic losses. Although the countries have different construction practices, there were many similarities in responses.

• School buildings were hard hit, similar to recent earthquakes elsewhere.
• Many older URM and nonductile reinforced concrete buildings collapsed
• Many taller buildings suffered extensive damage to their infill walls
• New technologies such as dampers and BRB can be used to retrofit tower buildings cost-effectively.

Acknowledgements

The Financial support of various agencies from the Government of Nepal is acknowledged. The authors recognize the significant contribution of Mr. Achyut Khanal at the Miyamoto office in Nepal in conducting analyses presented in this paper. The assistance of local government officials and volunteers from Ecuador and Mr Juan Sandoval, a structural engineer from Colombia in assistance with conducting the damage assessment surveys are acknowledged.

References

DoE (2015), Department of Education, government of Nepal, Personal communications

