Breakout Session 3: New Zealand Earthquake

• What new questions raised by these events require basic research?
 • What are tolerable impacts?
 • Who should be involved in decision making?
 • What should be the performance requirements?
 • Liquefaction – understanding, processes, effects on buildings and buried utilities (civil infrastructure); multiple occurrences at same site, multiple design-level events
 • How do we model probabilistically for ‘unlucky events’?
 • Effects of vertical accelerations (source, path and site effects), 3D shaking effects, implications for seismic isolation design, near fault effects

What new data are available as a result of these events?
• Data from events on multiple faults
• Attenuation relationships, stress drop, directionality, source depth
• Performance of URM and heritage buildings
 • technical issues, response of groups of buildings, neighbors retrofitting together, area-wide fixes
 • community perspectives of value and expectations regarding response
• Fragilities of all building types – most complete set of data yet collected
• Prevalence of precast concrete structures, 3D effects, diaphragm deseating, lessons regarding detailing
• What unique aspects of these events require the development of a focused research program?
 • Finish the validation of developing new structural systems for Chch rebuild. From lab to market
 • So long since last disaster that there was no existing community experience – how do you build latent capability?
 • What can be learnt from earthquake sequence effects? Stress loading
 • How to respond after first event and when to expect continuing sequence?
 • How to account for sequence effects when applying building placards?
 • Speed to reshape a recovery paradigm. Learning from Sept 2010 that was applied in Feb 2011
 • NZ’s unique insurance penetration has slowed recovery and leads to questions of portability of experiences
 • EQC now broke, remove government insurance?
 • Political view to not retreat from insurance
 • Implications of being well insured on building standards

• What are the important lessons from these larger than expected events for the U.S., Japan and New Zealand?

 • Deterministic – extreme conservatism?
 • Should there be a minimum/lower bound hazard level? M6.5 at 10 km?

 • Recovery issues – how to recover when major city looses its city center?

 • Land use planning, technical guidance, quantification of hazards
Why research collaborations with NZ?

• Major US research investment in Antarctica
• Similar built environment
• Similar code/design philosophies
• Tectonics very similar, soils/sands similar, analogies between Southern California and Canterbury plains
• Long standing successful collaborations, ease to quickly act
• Lots of face-to-face interactions previously that are now easy to leverage
• Free sharing of information, international researchers welcomed
• US researchers to be cognizant of NZ research Canterbury Earthquakes research plan

Priorities

• Recovery for major urban earthquake
• Tolerable impacts
 • Acceptable performance
 • Defining Hazard levels
• Liquefaction processes and effects
• Gathering and analyzing databases:
 • Damaged buildings: URM, Precast, RC
 • Businesses, schools, tourism, rugby
 • Utilities
 • Performance of damaged structures